55,228 research outputs found

    Numerical prediction of 3-D ejector flows

    Get PDF
    The use of parametric flow analysis, rather than parametric scale testing, to support the design of an ejector system offers a number of potential advantages. The application of available 3-D flow analyses to the design ejectors can be subdivided into several key elements. These are numerics, turbulence modeling, data handling and display, and testing in support of analysis development. Experimental and predicted jet exhaust for the Boeing 727 aircraft are examined

    Current economic and sensitivity analysis for ID slicing of 4 inch and 6 inch diameter silicon ingots for photovoltaic applications

    Get PDF
    The economics and sensitivities of slicing large diameter silicon ingots for photovoltaic applications were examined. Current economics and slicing add on cost sensitivities are calculated using variable parameters for blade life, slicing yield, and slice cutting speed. It is indicated that cutting speed has the biggest impact on slicing add on cost, followed by slicing yield, and by blade life as the blade life increases

    Impact of dynamical chiral symmetry breaking on meson structure and interactions

    Get PDF
    We provide a glimpse of recent progress in meson physics made via QCD's Dyson-Schwinger equations with: a perspective on confinement and dynamical chiral symmetry breaking (DCSB); a pre'cis on the physics of in-hadron condensates; results for the masses of the \pi, \sigma, \rho, a_1 mesons and their first-radial excitations; and an illustration of the impact of DCSB on the pion form factor.Comment: 6 pages, 3 figures, 1 table. Contribution to Proceedings of the 11th International Workshop on Meson Production, Properties and Interaction, Uniwersytet Jagiellonski, Instytut Fizyki, Krakow, Poland, 10-15 June 201

    Search for transient ultralight dark matter signatures with networks of precision measurement devices using a Bayesian statistics method

    Full text link
    We analyze the prospects of employing a distributed global network of precision measurement devices as a dark matter and exotic physics observatory. In particular, we consider the atomic clocks of the Global Positioning System (GPS), consisting of a constellation of 32 medium-Earth orbit satellites equipped with either Cs or Rb microwave clocks and a number of Earth-based receiver stations, some of which employ highly-stable H-maser atomic clocks. High-accuracy timing data is available for almost two decades. By analyzing the satellite and terrestrial atomic clock data, it is possible to search for transient signatures of exotic physics, such as "clumpy" dark matter and dark energy, effectively transforming the GPS constellation into a 50,000km aperture sensor array. Here we characterize the noise of the GPS satellite atomic clocks, describe the search method based on Bayesian statistics, and test the method using simulated clock data. We present the projected discovery reach using our method, and demonstrate that it can surpass the existing constrains by several order of magnitude for certain models. Our method is not limited in scope to GPS or atomic clock networks, and can also be applied to other networks of precision measurement devices.Comment: See also Supplementary Information located in ancillary file

    Assessment of the environmental toxicity and carcinogenicity of tungsten-based shot.

    Get PDF
    The toxicity of elemental tungsten released from discharged shot was assessed against previous studies that established a 1% toxic threshold for soil organisms. Extremely heavy theoretical shot loadings of 69,000 shot/ha were used to generate estimated environmental concentrations (EEC) for two brands of tungsten-based shot containing 51% and 95% tungsten. The corresponding tungsten EEC values were 6.5–13.5 mg W/kg soil, far below the 1% toxic threshold. The same shot loading in water produced tungsten EEC values of 2.1–4.4 mg W/L, levels that are not toxic under experimental conditions. Pure tungsten has not been shown to exhibit carcinogenic properties when ingested or embedded in animal tissues, but nickel, with which it is often alloyed, has known carcinogenicity. Given the large number of waterfowl that carry shot embedded in their body, it is advisable to screen lead shot substitutes for their carcinogenic potential through intra-muscular implantation

    Robustness of the Thirty Meter Telescope Primary Mirror Control System

    Get PDF
    The primary mirror control system for the Thirty Meter Telescope (TMT) maintains the alignment of the 492 segments in the presence of both quasi-static (gravity and thermal) and dynamic disturbances due to unsteady wind loads. The latter results in a desired control bandwidth of 1Hz at high spatial frequencies. The achievable bandwidth is limited by robustness to (i) uncertain telescope structural dynamics (control-structure interaction) and (ii) small perturbations in the ill-conditioned influence matrix that relates segment edge sensor response to actuator commands. Both of these effects are considered herein using models of TMT. The former is explored through multivariable sensitivity analysis on a reduced-order Zernike-basis representation of the structural dynamics. The interaction matrix ("A-matrix") uncertainty has been analyzed theoretically elsewhere, and is examined here for realistic amplitude perturbations due to segment and sensor installation errors, and gravity and thermal induced segment motion. The primary influence of A-matrix uncertainty is on the control of "focusmode"; this is the least observable mode, measurable only through the edge-sensor (gap-dependent) sensitivity to the dihedral angle between segments. Accurately estimating focus-mode will require updating the A-matrix as a function of the measured gap. A-matrix uncertainty also results in a higher gain-margin requirement for focus-mode, and hence the A-matrix and CSI robustness need to be understood simultaneously. Based on the robustness analysis, the desired 1 Hz bandwidth is achievable in the presence of uncertainty for all except the lowest spatial-frequency response patterns of the primary mirror

    Enhancing Bayesian risk prediction for epidemics using contact tracing

    Full text link
    Contact tracing data collected from disease outbreaks has received relatively little attention in the epidemic modelling literature because it is thought to be unreliable: infection sources might be wrongly attributed, or data might be missing due to resource contraints in the questionnaire exercise. Nevertheless, these data might provide a rich source of information on disease transmission rate. This paper presents novel methodology for combining contact tracing data with rate-based contact network data to improve posterior precision, and therefore predictive accuracy. We present an advancement in Bayesian inference for epidemics that assimilates these data, and is robust to partial contact tracing. Using a simulation study based on the British poultry industry, we show how the presence of contact tracing data improves posterior predictive accuracy, and can directly inform a more effective control strategy.Comment: 40 pages, 9 figures. Submitted to Biostatistic

    Calculation of the Chiral Lagrangian Coefficients

    Get PDF
    We present a systematic way to combine the global color model and the instanton liquid model to calculate the chiral Lagrangian coefficients. Our numerical results are in agreement well with the experimental values.Comment: 7 pages, To appear in Chin.Phys.Lett, Year 200
    • …
    corecore